US Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

References

Arnold, K. A., Echegoyen, L., Fronczek, F. R., Gandour, R. D., Gatto, V. J., White, B. D. \& Gokel, G. W. (1987). J. Am. Chem. Soc. 109, 3716-3721.
Bartsch, R. A., Heo, G. S., Kang, S. I., Liu, Y. \& Strzelbicki, J. (1982). J. Org. Chem. 47, 457-460.

Behr, J. P., Lehn, J. M., Moras, D. \& Therry, J. C. (1981). J. Am. Chem. Soc. 103, 701-703.
Burns, J. H. \& Sachleben, R. A. (1990). Inorg. Chem. 29, 788-795.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Echegoyen, L., Kaifer, A., Durst, h., Schultz, R. A., Dishong, D. M., Goli, D. M. \& Gokel, G. W. (1984). J. Am. Chem. Soc. 106, 5100-5103.

Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Gandour, R. D., Fronczek, F. R., Gatto, V. J., Minganti, C., Schultz, R. A., White, B. D., Arnold, K. A., Mazzocchi, D., Miller, S. R. \& Gokel, G. W. (1986). J. Am. Chem. Soc. 108, 4078-4088.
Hofman, F. W. \& Moore, T. R. (1958). J. Am. Chem. Soc. 80, 1150-1154.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sachleben, R. A. \& Burns, J. H. (1991). Acta Cryst. C47, 1968-1969.
Sachleben, R. A., Burns, J. H. \& Brown, G. M. (1988). Inorg. Chem. 27, 1787-1790.
Shoham, G., Christianson, D. W., Bartsch, R. A., Heo, G. S., Olsher, U. \& Lipscomb, W. N. (1984). J. Am. Chem. Soc. 106, 1280-1285.

Acta Cryst. (1991). C47, 2343-2345

Structure of $\left[\left(\mu_{3}-\mathrm{CH}\right) \mathrm{CoMo}_{2}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$; a Cobaltiodimolybdenum Trianglar Carbonyl Cluster Capped by an Alkylidyne Unit

By D. Neil Duffy,* Maram M. Kassis and A. David Rae
School of Chemistry, University of New South Wales, PO Box 1, Kensington NSW, 2033 Australia

(Received 4 December 1990; accepted 7 May 1991)

Abstract

Heptacarbonylbis (η^{5}-cyclopentadienyl)- $\mu_{3^{-}}$ methylidyne-cobaltiodimolybdenum (1) is one of the products isolated from the reaction of the cyclopentadienyltricarbonylmolybdenum anion, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ -$\mathrm{Mo}(\mathrm{CO})_{3}^{-}$, and nonacarbonyl- μ_{3}-chloromethyl-idyne-tricobalt, $\left(\mu_{3}-\mathrm{CCl}\right) \mathrm{Co}_{3}(\mathrm{CO})_{9}$. The crystal and molecular structure of (1) has been determined. The compound crystallizes in the monoclinic space group $P 2_{1} / c$ with $M_{r}=590 \cdot 09, \quad a=10.007$ (2), $b=12.886$ (2), $\quad c=16.536$ (4) $\AA, \quad \beta=116.74$ (1) $)^{\circ}$, $V=1908(1) \AA^{3}, \quad Z=4, \quad D_{x}=2.05 \mathrm{~g} \mathrm{~cm}^{-3}$. $\lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu($ Mo $K \alpha)=21.58 \mathrm{~cm}^{-1}$, $F(000)=1144, T=295 \mathrm{~K}, R=0.020$ for 2818 independent reflections with $I>3 \sigma(I)$. The structure consists of a cobaltiodimolybdenum triangle capped by an alkylidyne unit and with the two cyclopentadienyl groups in a transoid arrangement.

Introduction. $\left(\mu_{3}-\mathrm{CH}\right) \mathrm{CoMo}_{2}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, (1), is one of a number of related alkylidyne clusters that can be obtained by exchange of the cobalt atoms in the metal triangle of $\left(\mu_{3}-\mathrm{C} R\right) \mathrm{Co}_{3}(\mathrm{CO})_{9}(R=\mathrm{H}, \mathrm{Cl}$, Me, Ph etc.) by reaction with transition-metal car-

[^0]0108-2701/91/112343-03\$03.00
bonyl anions, or with transition-metal carbonyl dimers (Blumhofer, Fischer \& Vahrenkamp, 1986; Duffy, Kassis \& Rae, 1990; Duffy, Kassis \& Rae, unpublished; Beurich \& Vahrenkamp, 1982). This paper reports the structure of (1), which was synthesized via the reaction of $\left(\mu_{3}-\mathrm{CCl}\right) \mathrm{Co}_{3}(\mathrm{CO})_{9}$ with the metal-transfer reagent $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3}$.

Experimental. $\left(\mu_{3}-\mathrm{CH}\right) \mathrm{CoMo}_{2}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ crystallizes as green/black crystals in the monoclinic space group $P 2_{1} / c$. An irregularly shaped crystal of maximum dimensions $0.16 \times 0.14 \times 0.08 \mathrm{~mm}$ was mounted on a quartz fibre and the lattice parameters ($T=295 \mathrm{~K}, 24$ reflections, θ range $20-23^{\circ}$) were determined and refined with the least-squares routine on an Enraf-Nonius CAD-4 four-circle diffractometer equipped with a graphite monochromator.

A total of 3341 unique reflections (of 3728 collected) were collected in the range $1.5<\theta<25^{\circ}$ using an $\omega-2 \theta$ scan mode ($R_{\text {int }}=0.014$). The intensity of one standard reflection was measured after every 2000 s of X-ray exposure. No decomposition occurred during data collection. Lorentz, polarization and absorption corrections (Gaussian integration method, maximum and minimum transmission

[^1]factors were 0.845 and 0.692 respectively) were applied to all reflections using locally written programs. 2818 independent reffections with $I>3 \sigma(I)$ were used in the structure refinement calculations using BLOCKLS (based on ORFLS, Busing, Martin \& Levy, 1962). Scattering factors for neutral atoms were obtained from Ibers \& Hamilton (1974).
The atomic coordinates of the three heavy atoms were obtained by direct methods, MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). A Fourier analysis based on the three metal positions gave an R value of $0 \cdot 23$. The associated and subsequent difference Fouriers revealed all non-hydrogen atoms in chemically reasonable positions. With all non-hydrogen atoms anisotropic and the hydrogen atoms included in positions located from a difference map (refined with temperature factors equal to those of the atoms to which they are attached) the refinement converged, BLOCKLS \{based on F, 286 parameters refined, reflection weights used were $1 / \sigma^{2}\left(F_{o}\right)$ with $\sigma^{2}\left(F_{o}\right)$ being derived from $\left.\left[\sigma^{2}\left(I_{o}\right)+0.04 I_{o}^{2}\right]^{1 / 2}\right\}$, with final agreement indices of $R=0.020$ and $w R=0.027$. $\Delta / \sigma_{\max }<1$ and $\Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3}$. Fig. 1 shows the molecular structure (ORTEPII, Johnson, 1976) of (1) and the numbering scheme employed. Table 1 lists the atomic coordinates of the non-hydrogen atoms and $U_{\text {eq }}$ values, and Table 2 lists selected bond lengths and bond angles.*

* Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54230 (17 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

Fig. 1. The molecular structure of $\left(\mu_{3}-\mathrm{CH}\right) \mathrm{CoMO}_{2}(\mathrm{CO})_{7}$ ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and the numbering scheme used (ORTEPII).

Table 1. Atomic parameters and standard deviations for the non-hydrogen atoms of ($\mu_{3}-\mathrm{CH}$)-$\mathrm{CoMo}_{2}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Mo(1)	0.20417 (2)	$0 \cdot 14794$ (2)	- 0.34490 (2)	0.018 (1)
$\mathrm{Mo}(2)$	0.46063 (3)	0.27893 (2)	$0 \cdot 36058$ (2)	0.023 (1)
$\mathrm{Co}(1)$	0.25750 (4)	$0 \cdot 18922$ (3)	$0 \cdot 20078$ (3)	0.023 (1)
C	0.3846 (3)	$0 \cdot 1288$ (2)	. 0.3169 (2)	0.021 (1)
C(1)	0.3522 (3)	$0 \cdot 1170$ (2)	$0 \cdot 4712$ (2)	0.026 (1)
$\mathrm{O}(1)$	$0 \cdot 4309$ (3)	$0 \cdot 0955$ (2)	$0 \cdot 5443$ (2)	0.036 (1)
C(2)	$0 \cdot 2225$ (3)	0.0000 (2)	$0 \cdot 3241$ (2)	0.024 (1)
O(2)	0.2337 (3)	-0.0866 (2)	$0 \cdot 3139$ (2)	0.036 (1)
C(3)	0.3434 (4)	$0 \cdot 3551$ (2)	0.4084 (2)	0.032 (2)
$\mathrm{O}(3)$	$0 \cdot 2934$ (3)	0.4118 (2)	0.4423 (2)	0.055 (2)
C(4)	$0 \cdot 3902$ (4)	$0 \cdot 3865$ (3)	$0 \cdot 2660$ (3)	0.037 (2)
O (4)	$0 \cdot 3641$ (4)	0.4574 (2)	0.2177 (2)	0.055 (2)
C(5)	$0 \cdot 1381$ (4)	0.0840 (3)	$0 \cdot 1407$ (2)	0.030 (1)
$\mathrm{O}(5)$	0.0594 (4)	0.0185 (2)	$0 \cdot 1021$ (2)	0.046 (1)
C(6)	0.3974 (5)	0.1845 (3)	$0 \cdot 1607$ (2)	0.037 (2)
O(6)	$0 \cdot 4908$ (4)	$0 \cdot 1794$ (3)	$0 \cdot 1399$ (2)	0.065 (2)
C(7)	$0 \cdot 1290$ (4)	$0 \cdot 2940$ (3)	$0 \cdot 1509$ (2)	0.030 (1)
O(7)	0.0441 (3)	0.3585 (2)	$0 \cdot 1178$ (2)	0.046 (2)
$\mathrm{Cp}(11)$	0.0247 (3)	$0 \cdot 2758$ (3)	0.3273 (3)	0.033 (2)
$\mathrm{Cp}(21)$	0.0682 (4)	$0 \cdot 2270$ (3)	$0 \cdot 4106$ (3)	0.035 (2)
$\mathrm{Cp}(31)$	0.0257 (4)	$0 \cdot 1206$ (3)	$0 \cdot 3950$ (3)	0.041 (2)
$\mathrm{Cp}(41)$	-0.0465 (4)	$0 \cdot 1074$ (3)	$0 \cdot 3003$ (3)	0.040 (2)
$\mathrm{Cp}(51)$	-0.0472 (3)	$0 \cdot 2026$ (3)	0.2591 (3)	0.032 (2)
$\mathrm{Cp}(12)$	0.6976 (4)	$0 \cdot 2105$ (4)	$0 \cdot 3904$ (4)	0.050 (3)
$\mathrm{Cp}(22)$	0.6988 (4)	$0 \cdot 3146$ (4)	$0 \cdot 3751$ (3)	0.049 (3)
$\mathrm{Cp}(32)$	0.6795 (5)	0.3681 (4)	0.4409 (4)	0.053 (3)
$\mathrm{Cp}(42)$	$0 \cdot 6668$ (5)	$0 \cdot 2935$ (7)	0.4992 (3)	0.054 (3)
$\mathrm{Cp}(52)$	0.6789 (4)	$0 \cdot 1970$ (5)	0.4654 (4)	0.051 (3)

Table 2. Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with their e.s.d.'s for $\left(\mu_{3}-\mathrm{CH}\right) \mathrm{CoMo}_{2}(\mathrm{CO})_{7^{-}}$ $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$

Discussion. The structure consists of two molybdenum atoms and a cobalt atom forming a metal triangle which is capped by an alkylidyne unit. The structure is similar to that of the methyl analogue, $\left(\mu_{3}-\mathrm{CCH}_{3}\right) \mathrm{CoMo}_{2}(\mathrm{CO})_{7}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$, (2), recently prepared by Vahrenkamp (Blumhofer et al., 1986), with several minor variations.

The metal triangle in (1) is slightly distorted in that the two Mo-Co distances are different at $[\mathrm{Mo}(1)-$ $\mathrm{Co}(1)], \quad 2 \cdot 7169(3) \AA, \quad$ and $\quad[\mathrm{Mo}(2)-\mathrm{Co}(1)]$, 2.7679 (4) \AA, compared to the value of 2.712 (2) \AA listed for (2). This unexpected variation in the metal
triangle is reflected in variations of the other bonds and angles associated with the molybdenum atoms as shown in Table 2. The longer Mo-Co bond is that associated with the molybdenum whose cyclopentadienyl ring is on the upper, or capped, face of the metal triangle, i.e. $\mathrm{Mo}(2)$. Normally this lengthening would be assumed to be a mechanism to reduce the steric interactions between the cyclopentadienyl group and the other atoms on the upper face. However, the closest contact on this upper face is between the alkylidyne carbon and $\mathrm{C}(2)$ and $\mathrm{Mo}(1)$, at $2 \cdot 36 \AA$, yet this causes no marked distortions around $\mathrm{Mo}(\mathrm{I})$. The $\mathrm{Mo}-\mathrm{C}_{\mathrm{ap}}\left[\mathrm{Mo}(1)-\mathrm{C}_{\mathrm{ap}} \quad 2 \cdot 069\right.$ (3) \AA, $\mathrm{Mo}(2)-\mathrm{C}_{\text {ap }} \quad 2.087$ (3) $\left.\AA\right]$ distances are slightly shorter than in (2), and are also slightly shorter than in the related compound $\left(\mu_{3}-\mathrm{CPh}\right) \mathrm{Co}_{2} \mathrm{Mo}(\mathrm{CO})_{8}\left(\eta^{5}-\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$), (3) (Beurich \& Vahrenkamp, 1982), but not significantly so. These other two structures have $\mathrm{Mo}-\mathrm{C}_{\mathrm{ap}}$ distances of $2 \cdot 11$ (1) and $2 \cdot 10$ (1) \AA respectively. The $\mathrm{Co}-\mathrm{C}_{\mathrm{ap}}$ distances are essentially identical in all three structures [1.933 (3) \AA in (1), 1.94 (1) \AA in (2) and 1.93 (1) \AA in (3)].

The carbonyl groups on the cobalt atom are all as expected with no unusual variations in bond lengths or angles. The carbonyl groups on the molybdenum atoms, on the other hand, show deviations from the expected norm. The main deviation of note for the carbonyl groups is that those attached to $\operatorname{Mo}(2)$ show marked deviations from linearity. The $\mathrm{Co}(1)$ and $\mathrm{Mo}(1)$ carbonyls all have angles close to the expected 180° [range $175 \cdot 8(3)-178 \cdot 6(3)^{\circ}$], whereas those on $\mathrm{Mo}(2)$ show angles of $168.6(3)^{\circ}$ [C(3)$\mathrm{O}(3)]$ and $171 \cdot 3(3)^{\circ}[\mathrm{C}(4)-\mathrm{O}(4)]$. The closest contact for carbonyl $\mathrm{C}(3)-\mathrm{O}(3)$ is $\mathrm{H}(\mathrm{Cpl1})$ at $2 \cdot 6 \AA$, while the closest contact for $\mathrm{C}(4)-\mathrm{O}(4)$ is $\mathrm{C}(3)$ at $2.63 \AA$.

These distances are similar to those found for all the other carbonyl groups except for the close interaction of the alkylidyne carbon with $\mathrm{C}(2)(2 \cdot 36 \AA)$ and so presumably the distortion is due to subtle interactions, both intra- and intermolecular.

A further point of note is the tilting of the cyclopentadienyl ligands with respect to the metal. The metal- $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ distances range from $2 \cdot 367$ to $2.299 \AA$ for ring 2 [on $\mathrm{Mo}(2)$] and from 2.378 to $2.306 \AA$ for ring 1 [on $\mathrm{Mo}(1)]$. This tilting appears to be a common feature of metal-cyclopentadienyl interactions and this range of distances is as expected.

We thank Mr D. Craig for the collection of the data for this structure.

References

Beurich, H. \& Vahrenkamp, H. (1982). Chem. Ber. 115, 23852408.

Blumhofer, R., Fischer, K. \& Vahrenkamp, H. (1986). Chem. Ber. 119, 194-214.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). BLOCKLS is the local version of ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Duffy, D. N., Kassis, M. M. \& Rae, A. D. (1990). Appl. Organomet. Chem. 4, 451-455
Ibers, J. \& Hamilton, W. C. (1974). Editors. International Tables for X-ray Crystallography. Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1991). C47, 2345-2348

Structure of (N, N^{\prime}-Bissalicylidene-1,5-diamino-3-azapentane)dioxouranium(VI) Ethanol Solvate

By N. J. Irons and A. J. Smith
Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, England

(Received 10 December 1990; accepted 11 June 1991)

Abstract

N, N^{\prime}\)-(3-Aza-1,5-pentanediyl)bis(salicylideneiminato)]dioxouranium(VI) ethanol solvate, $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{U} . \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}, M_{r}=625 \cdot 466$, orthorhombic, Pca $_{1}, \quad a=9.912(10), \quad b=11.438$ (19),$\quad c=$ 19.599 (38) $\AA, \quad V=2222.2 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.869 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \mu=$ $69 \cdot 29 \mathrm{~cm}^{-1}, \quad F(000)=1191 \cdot 7$, room temperature,

final $R=0.069$ for 1654 unique observed reflexions. The ethanol molecules are not coordinated to the uranium but occupy channels running through the lattice. They cause distortion of the molecules of the complex in which the angles between the planes of the benzene rings and the equatorial coordination plane of the uranium are decreased.

[^0]: * To whom all correspondence should be addressed.

[^1]: (c) 1991 International Union of Crystallography

